BIM for Bridges and Structures Project Update

T-19 Committee Meeting AASHTO Committee on Bridges and Structures Annual Meeting Pittsburgh, PA 6/20/2022

Agenda

- 1. MVD Update
- 2. Website Update
- 3. ROI Study
- 4. Unit Test Suite Update
- 5. Announcements and Q&A

MVD Update

General update:

International MVD development, dependency on IFC 4.3 and base MVDs

- IFC4.3 has been completed and submitted to ISO. Final release is planned for spring 2023.
 - Project team is using the "production" standard.
 - No technical changes are expected.
- Preparations have started for certification of the Alignment-based Reference View (ARV) MVD.
 - TPF-5(372) Bridge Design-to-Construction MVD will be an extension of the ARV MVD.
 - Project team is coordinating with bSI to share relevant test cases for certification.

What is the data dictionary?

What is the difference between an MVD and a data dictionary?

MVD

- Ability of software to support exchanges
- Required for software certification
- Exchange requirements to include alignment, geometry, relationships
- **Example:** Software shall support vertical and horizontal alignment plus superelevation to generate 3D extrusions in IFC-Export

Data Dictionary

- Harmonized definitions of alphanumerical content
- Mapping of user language to IFC-definitions
- Includes properties, property groups and their assignment to model components
- **Example:** All bridge bearings (mapped to *lfcBearing*) shall contain properties about size, material, and degrees of freedom in IFC-Export

MVD vs. Data Dictionary

MVD

Provides ability to share the data

Software vendors/ developers

IFC export option in software Apply data templates to CAD workspace

Automation Engineer/

Data Dictionary

Provides possible content of the

data and its unique definitions

DOT CAD Manager

Create object libraries

Bridge Engineer

Timeline of the MVD Work

International Developments

Website Update

BIM for Bridges Website

- The landing page has been updated to include a section for upcoming events
 - https://BIMforBridgesUS.com
- Two pages have been added
 - Calendar expansion of the upcoming events on the landing page
 - Resources documents and presentations produced and delivered from the project as well as links to BIM-related websites

BIM for Bridges Website

BIM for Bridges Website

Resources

DOCUMENTS

PRESENTATIONS

TPF-5(372) BIM for Bridges and Structures Information Delivery Manual	December 1, 2021
Pooled Fund Initiative AASHTO Committee on Bridges and Structures Annual Meeting, T 19 Committee Meeting	July 13, 2021
TPF 5(372) Annual Software Vendor Workshop	Day 1 Tuesday, 20 July 2021
TPF 5(372) Annual Software Vendor Workshop	Day 2 Wednesday, 21 July 2021
TPF 5(372) Annual Software Vendor Workshop	Day 3 Thursday, 22 July 2021

LINKS

ROI Study

Revised Scope and Schedule for Contract Year 4

Objectives

- Describe the benefits and costs of using BIM for bridges
- Describe the additional benefits and costs of using the IFC standard
- Provide an overview of existing tools for quantifying the ROI of BIM
 - Focus on TFRS-02 Tool (Lifecycle BIM for Infrastructure)
 - Identify areas for improvement, particularly to focus on bridges
- Determine data collection needs for use of existing tools in future ROI assessments of BIM for bridges
- Address common methodological issues for quantifying the ROI of BIM for bridges

Key Activities & Assumptions

- Activities
 - 1) Synthesis of Literature Review (started in Year 3)
 - 2) Qualitative Assessment of Benefits and Costs
 - 3) Overview of Existing Tools and Identification of Data Needs
 - 4) Investigation of ROI Methodological Issues (Q&A format)
- Assumptions
 - 1) No primary data collection (use of literature findings & interviews)
 - 2) Not a formal benefit-cost analysis (no ROI estimate)
 - 3) Focus on existing resources and data collection needs
 - 4) All findings summarized in White Paper

Deliverables

- One 20 to 30 page-long White Paper
 - Introduction (context, objectives)
 - Qualitative assessment of benefits and costs
 - Existing tools and data collection needs
 - Methodological issues / questions & answers
 - Conclusion
- 2 to 3-page Executive Summary, with visuals
- Options for publishing and/or presenting paper at conference (e.g., 2024 TRB Annual Meeting)

Expected Timeline of ROI Study

	JUN 2022	JUL 2022	AUG 2022	SEP 2022	OCT 2022	NOV 2022	DEC 2022	JAN 2023	FEB 2023	MAR 2023	APR 2023	MAY 2023	JUN 2023	JUL 2023
Synthesis of Literature Review														
Qualitative Assessment of Benefits and Costs														
Review of Existing Tools & Identification of Data Needs														
Investigation of ROI Methodological Issues				-										
Preparation of Draft White Paper														
Preparation of Pre-Final White Paper														
Preparation of Final White Paper, ready for publication										_				

status update PPT

deliverable

Unit Test Suite Update

Unit Test Suite

Instructions for modeling bridge elements and designs to enable software developer/vendor implementation testing and validation of IFC-based exchange requirements.

IFC4.3 Schema Properties

Property Set	Property	Value
Information	Name	Pier 01
Information	Туре	В
Information	Material	Concrete

Data Dictionary Properties

Property Set	Property	Value
AASHTO Info	Custom Property 01	Value 01
AASHTO Info	Custom Property 02	Value 02
AASHTO Info	Custom Property 03	Value 03

TPF-5(372) IFC4.3 Software Implementation Unit Test Suite

2021-05-04

Summary:

The Unit Test Suite is designed to provide software developers/vendors with a series of instructions to create and export models of various elements, systems, and conditions across the breadth of expected supported use cases. It uses the common software development methodology of reducing complex software to the most basic operational "unit" that can be objectively judged as to being correct or not. These unit tests start at simple, single elements and then aggregate in various configurations and growing size and complexity at each level. This enables the developer to quickly test the quality of IFC output and more easily troubleshoot basic issues before moving onto the next level of complexity. Ideally, by the time the developer reaches the level of a complete bridge design, there are few issues to correct and none are explicitly related to prior unit test cases.

The baseline "Level 1 - Elements" list is based on the "National Bridge Elements (NBEs)" and "Bridge Management Elements (BMEs)", as defined in the "Manual for Bridge Element Inspection, Second Edition, 2019" by AASHTO, including prestressed concrete-, reinforced concrete-, masonry-, and steel-based material configurations, as well as "Chapter 3 - Scope" of Part One: Industry Use Narrative of the "Information Delivery Manual (IDM): Construction Contract Model, Representing the Handoff from Design to Construction for Highway Bridges". All other lists are logical aggregations of the elements growing in complexity. The "IFC Concepts Tested" for each entry in each list is defined by the exchange requirements of the IDM and resulting Model View Definition (MVD).

Exclusions:

The following elements, elements types, system types, and bridge designs are explicitly excluded from

- Timber-based elements and bridges
- Cable-stayed, or suspension, bridges
- Movable bridges
- Steel Truss bridges
- "Other" materials, unless explicitly noted

- Independent Agency-Defined Elements			
Level	Name	•	Description
Level 1	Elements		Basic elements of bridge construction i relevant geometric permutations
Level 2	Arrays		Simple arrays of similar basic elements
Level 3	Aggregations		Aggregation of elements and needed c superstructures subsets/bays/spans
Level 4	Bridges		Examples of complete supported bridge

Level 1 – Elements (69)

- Level 2 Arrays (39)
- Level 3 Aggregations (~20)

- Levels 1, 2, & 3, +...

Project hierarchy including

IfcAlignment
 Geolocation

Level 4 – Bridges (7)

designs

~135 tests identified so far

	m profiles ;)	×
	e Properties	
Project, §	Site, Facility,	

General Notes:

1. PSC = Prestressed Concrete (aka Precast), RC = Reinforced Concrete (aka Cast-in-Place)

2. All concrete-based elements should include reinforcing, conduits, electrical boxes, and embedded plates

3. Any integral supports for appertanances not included in the scope (e.g., signs, lights) should be included.

4. The Level of Geometric Detail is based on previous construction documentation delivery standards.

5. Elements are modeled in their in situ, fully dead loaded state, no cambering is shown.

TPF-5(372) IFC4.3 Software Implementation Unit Test Suite

2021-05-04

Summary:

The Unit Test Suite is designed to provide software developers/vendors with a series of instructions to create and export models of various elements, systems, and conditions across the breadth of expected supported use cases. It uses the common software development methodology of reducing complex software to the most basic operational "unit" that can be objectively judged as to being correct or not. These unit tests start at simple, single elements and then aggregate in various configurations and growing size and complexity at each level. This enables the developer to quickly test the quality of IFC output and more easily troubleshoot basic issues before moving onto the next level of complexity. Ideally, by the time the developer reaches the level of a complete bridge design, there are few issues to correct and none are explicitly related to prior unit test cases.

The baseline "Level 1 - Elements" list is based on the "National Bridge Elements (NBEs)" and "Bridge Management Elements (BMEs)", as defined in the "Manual for Bridge Element Inspection, Second Edition, 2019" by AASHTO, including prestressed concrete-, reinforced concrete-, masonry-, and steel-based material configurations, as well as "Chapter 3 - Scope" of Part One: Industry Use Narrative of the "Information Delivery Manual (IDM): Construction Contract Model, Representing the Handoff from Design to Construction for Highway Bridges". All other lists are logical aggregations of the elements growing in complexity. The "IFC Concepts Tested" for each entry in each list is defined by the exchange requirements of the IDM and resulting Model View Definition (MVD).

Exclusions:

The following elements, elements types, system types, and bridge designs are explicitly excluded from

- Timber-based elements and bridges
- Cable-stayed, or suspension, bridges
- Movable bridges
- Steel Truss bridges
- "Other" materials, unless explicitly noted

- Independent Agency-Defined Elements			
Level 🔽	Name	~	Description
Level 1	Elements		Basic elements of bridge construction i relevant geometric permutations
Level 2	Arrays		Simple arrays of similar basic elements
Level 3	Aggregations		Aggregation of elements and needed c superstructures subsets/bays/spans
Level 4	Bridges		Examples of complete supported bridg

Example

- Level 1 Element: Cross-frame angle
- Level 2 Array: Cross-frame
- Level 3 Aggregation: Superstructure

Level 4 – Bridge

Bridges	Examples of complete supported bridg	e designs	 Levels 1, 2, & 3, + IfcAlignment Geolocation Project hierarchy including Project, Site, Facility,

General Notes:

1. PSC = Prestressed Concrete (aka Precast), RC = Reinforced Concrete (aka Cast-in-Place)

2. All concrete-based elements should include reinforcing, conduits, electrical boxes, and embedded plates

3. Any integral supports for appertanances not included in the scope (e.g., signs, lights) should be included.

4. The Level of Geometric Detail is based on previous construction documentation delivery standards.

5. Elements are modeled in their in situ, fully dead loaded state, no cambering is shown.

Unit Test Suite: Update

Scope

- 7 bridge designs identified
- Actual projects
- Additional Level 1 Element tests based on state standards

Timeline for Vendors

- Level 1 outline completed beginning of May 2022
- Circulate ledger to Software Vendor Advisory Group in June for review
- Level 1 & 2 Unit Test instructions delivered to vendors at end of July, with MVD requirements
- Levels 3 & 4 and revisions by end of August

Unit Test Suite: Review by T-19/Pooled Fund

Suggested Review Process

- June 27 Team to provide ledger w/ illustrations
- Week of July 11 Orientation
- August 12 Comments due

Purpose of review is to make sure that we are covering all reasonable permutations for conventional workhorse bridge components.

Unit Test Ledger

Level 1 – Bridge Model Elements (1/3)

Element	Permutation	Test Name	File Name	Notes	Reference
Alignment	Curved horiz and vert				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	Straight horiz, curved vert (three span)				2_Iowa Municipality_Shaver Road Bridge_06112021
Approach Slab	RC				2 Iowa Municipality Shaver Road Bridge 06112021
	RC Sleeper (Approach Slab support)				2_Iowa Municipality_Shaver Road Bridge_06112021
Deck	PSC slabs/panels (1/2 depth) on Steel Girders				Deck PSC
	PSC slabs/panels (1/2 depth) on PSC girders				Deck PSC
	RC Slab on PSC Girder (straight along curved roadway alignment)				3_Nebraska DOT_US275_Scribner North IT Girder Bridge
	RC Slab on Steel Girder				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	RC Slab (solid slab, no girders)				2_Iowa Municipality_Shaver Road Bridge_06112021
Sidewalk w/ curb	RC Slab, raised sidewalk on deck				2 Iowa Municipality Shaver Road Bridge 06112021
Deck Drains	Slotted Trench, no deck depression				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	Point drain/tube w/ deck depression				2_Iowa Municipality_Shaver Road Bridge_06112021
Joints	Strip Seal Expansion Joint				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	Modular Joint w/thickened deck slab				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	Pourable Joint Seal (w/ backer rod)				Pourable Joint with Backer Rod
	Compression Joint Seal				Compression joint details
	Tooth/Finger Joint				5_Iowa DOT_US34 over Missouri River_Design 311_2011
Surfaces / Coatings / Protective Systems	Deck Wearing Surface (3" asphalt)				3_Nebraska DOT_US275_Scribner North IT Girder Bridge
Bridge Rail / Barrier / Parapet	RC, F-Shape Barrier				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	RC, Open Rail				3_Nebraska DOT_US275_Scribner North IT Girder Bridge
	RC parapet w/ Metal Top Rail				2 Iowa Municipality Shaver Road Bridge 06112021
	RC Sidewalk separation barrier				2 Iowa Municipality Shaver Road Bridge 06112021
Integral Supports for signs/lighting	Steel				1_Iowa DOT_Johnson County I-80 I-380 Design 320_2018
	RC light pole blister on deck				Light Pole Blister

Unit Test Ledger

Level 4 – Complete Bridges

Bridge Type	Test Name	File Name	Notes	Reference
Highway ramp, steel superstructure, non-standard concrete				1_lowa DOT_Johnson County I-80 I-380
piers				Design 320_2018
Water crossing, concrete superstructure				2_lowa Municipality_Shaver Road Bridge
Water crossing, skewed layout, concrete superstructure				3_Nebraska DOT_US275_Scribner North IT
				Girder Bridge
Highway ramp, concrete superstructure, curved alignment				4_Polk, Ramp B over UPRR_Design
Water crossing, long span, mixed steel and concrete super				5_lowa DOT_US34 over Missouri
structure, mixed standard and non-standard concrete piers				River_Design
Water crossing, simple span, concrete box girders				6_PennDOT_67343_5_Structure Plan
Box culvert				8_NC DOT_C0070-CLONTZ_LONG_ROAD- OVER-GRASSY_BRANCH

Unit Test Suite & Certification

When complete, the Unit Test Suite will also serve as the test needed for Certification of an application's ability to export and/or import IFC models based on the MVD.

Based on MVD

Assumed design/modeling applications

BIDGES AND STRUCTURES TPF-5(372)

EXPORT

Initially based on MVD, but broader IFC4.3 support is expected

IMPORT

Dependent on software purpose/functionality

(IFC-STP = .ifc)

IFC4.3

Announcement #1

- Software Vendor Workshop
 - Wednesday (June 22), 8 AM to noon
 - Allegheny Room, 17th floor
- Open to all state DOTs and FHWA
- Agenda
 - 8:00 Welcome and introductions
 - 8:15 Update on bSI's IFC4.3 and ARV MVD, including Q&A
 - 8:45 Update on TPF-5(372) MVD and Data Dictionary, including Q&A
 - 9:15 Unit Test Suite Update
 - 9:45 Coffee break and networking opportunity
 - 10:30 Design-to-Construction Workflows Deep Dive
 - 12:00 Adjourn

Announcement #2

- TPF-5(372) is approved for a sixth funding year.
- This will provide for a fifth contract year (February 2023-February 2024) of project work for the consultant team.
- Please confirm with your research funding contacts that funding is being earmarked in an upcoming work program.
 - Funding contacts should have received funding request emails.
- Please email Jim Hauber of Iowa DOT if you have questions - <u>James.Hauber@iowadot.us</u>

Announcement #3

- Iowa DOT is organizing a 2nd BIM for Bridges and Structures Pooled Fund.
- Potential activities could include:
 - Training materials leveraging the outcomes of TPF-5(372)
 - Support for pilot projects implementing the standard from TPF-5(372)
 - Development of additional IDMs and MVDs, such as for Digital As-Builts and Asset Management
- Please email Jim Hauber of Iowa DOT if your state may be interested - <u>James.Hauber@iowadot.us</u>
- Official solicitation expected in early 2023.

Julie Rivera, PE, SE TPF-5(372) Project Manager, HDR Email: julie.rivera@hdrinc.com

